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Abstract 

This paper presents a real-time fully autonomous prescriptive solution for explainable 
cyber-fraud detection within the iGaming industry. We demonstrate how our solution 
facilitates the time-consuming task of player risk and fraud assessment through 
prescriptive analytics. Our tool leverages machine learning algorithms and advancements 
in the field of eXplainable AI to derive smarter predictions empowered by local 
interpretable explanations in real-time. Our best-performing pipeline was able to predict 
fraudulent behaviour with an average precision of 84.2% and an Area Under the Receiver 
Operating Characteristics of 0.82 on our dataset. We also addressed the phenomenon 
of concept-drift and discussed our empirical and data-driven strategy for detecting and 
dealing with this problem. Finally, we cover how local interpretable explanations can help 
adopt a pro-active stance in fighting fraud.
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1. Introduction

Cyber-fraud is a significant problem which poses severe 
challenges to all world organisations. A recent study by the 
Association of Certified Fraud Examiners [2] report that 
organisations lose an annual 5% of their total revenue to 
fraudulent activity. Anti-fraud systems have been in constant 
development to counteract fraud. This is especially true 
within the iGaming industry where most gaming regulations 
require operators to comply with stricter anti-fraud measures. 
As argued by Banks [3], this industry is still susceptible to 
numerous types of cyber-fraud due to its wide availability and 
easy access [19]. The rise of transactional anonymity is a factor 
which helps facilitate fraud [11]. Although for the most part, the 
types of cyber-fraud remain the same, the criminal approach is 
continuously changing, rendering this threat even more severe 
and active. Despite the latter, as reported by McMullan and 
Rege [19], the industry is still yet to fully mature in literature 
which investigates the problem of cyber-fraud.

Previous fraud detection investigations include both 
unsupervised and anomaly detection techniques. We consider 
the fraudulent activity to be anomalous, and thus, should 
deviate from normal. Yamanishi et al. [36] implemented 
a multi-variate unsupervised outlier detection technique 
on medical insurance data which flags outliers using the 
Hellinger distance. Burge and Shawe-Taylor [5] also used 
an unsupervised approach based on the Hellinger distance 
between two recurrent neural networks to predict fraud in 
telecommunications. Tian et al. [29] used a non-parametric 
clustering approach for flagging fraudulent behaviours in 
crowd-sourcing. Cao et al. [6] also use a clustering algorithm 
to detect malicious accounts in online social networks. Christou 
et al. [7] perform fraud detection for online games of chance 
using a clustering approach. Bolton et al. [4] investigated an 
anomaly detection approach for Peer Group Analysis based on 
the t-statistic. For this research, we had access to a dataset 
which included labelled instances of previously verified 
fraudulent players by fraud analysts. Consequently, we decided 
to structure this problem as a binary classification task with the 
two classes being: ‘fraud’ and ‘non-fraud’.

In the iGaming business, the most common types of cyber-
fraud are money laundering [7], identity theft, and bonus abuse. 
In money laundering cases, criminals attempt to mask the 
legitimacy of their funds by depositing, wagering, and finally 
withdrawing a percentage of their account; thus, creating 
a complex money trail. In such cases, the gaming operator 
is not directly faced with a financial hit; however, ensuring 
mechanisms are in place to protect against such activity is 

critical. The industry is heavily regulated when it comes to 
money laundering, and gaming organisations are required to 
have such measures working. Failure to comply will result in 
a permanent loss of licence to operate, and subsequently, 
a reputation hit. Identity theft occurs when criminals gain 
unauthorised access to a client’s account or use stolen payment 
methods to wager money and bank the winnings. The latter 
is mostly done through a method called chip dumping, where 
two or more players (known as a syndicate) intentionally lose 
to each other to move the funds from one account to another. 
Even if the operator discovers of the original offender, linking all 
the players within that syndicate together proves to be a rather 
tedious and challenging task. The third type, bonus abuse, also 
use similar methods to exploit promotional content offered by 
the organisation through chip dumping.

Establishing good governance by taking a pro-active 
stance against cyber-fraud is vital to ensure that the 
industry continues to scale and remain a reputable source 
of entertainment. Most gaming operators rely on manual 
transaction monitoring conducted by a team of fraud analysts. 
When considering that a typical gaming operator records 
millions of daily transactions, it becomes next to impossible 
to scrutinise every transaction effectively. Inevitably, the 
innovation of automated solutions is essential.

1.1 Our Contribution

This research makes several contributions to the scientific 
domain. Firstly, we present a literature review of similar fraud 
detection solutions both in the iGaming industry and other 
fields in Section 2. We also discuss a pipeline which can 
predict iGaming fraud with a precision of 84.2%, evaluated on 
a real-life dataset. We also present a strategy to detect and 
combat concept-drift, which refers to a changing underlying 
distribution of the dataset, purely based on datadriven 
methods. This research extends the predictive component of 
the machine learning approach and investigates an application 
for local interpretable explanations to highlight potential fraud 
indicators per player. We show how our approach results in 
a prescriptive solution which can predict the likelihood of 
fraud and list the key indicators supporting that particular 
prediction. The latter not only allows for a pro-active stance 
against cyber-fraud but also facilitate the next steps for the 
fraud analyst, such as requesting further player identification 
documents or permanently blocking the player.

We structure the rest of the paper as follows. In Section 2, we 
provide a literature review of existing similar solutions. We 
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discuss our pre-processing approach and modelling strategy 
in Section 3. Then, in Section 4, we present our results on 
the real-life dataset and respective observations. Finally, we 
summarise our findings and present our conclusions and future 
recommendations in Section 5.

2. Related Work

Several supervised fraud detection studies and solutions exist. 
In most scenarios, labelled datasets for fraud detection tend 
to be heavily imbalanced since fraudulent activity tends to 
be rarer than non-fraudulent [9, 21]. In a classification fraud 
detection task, we might have to also deal with the class 
imbalance issue beforehand. Whitrow et al. [35] investigated 
credit-card fraud. They observed that aggregating transactions 
over some time (one to three days) helped with dealing with 
the class distribution problem. The authors observe that the 
Random Forest (RF) algorithm yielded the best predictive result 
when compared to other supervised algorithms, like Support 
Vector Machine (SVM). RF is an algorithm which builds several 
Decision Trees (DT), called an ensemble, and the generates the 
final prediction by calculating the mode of all decision trees. 
A DT is a predictive model that maps the training samples into 
branches and leaves to create a tree-like structure. Dhankhad 
et al. [9] suggest the grouping of transactions as a means to 
combat class imbalance along with the utilisation of network-
based features. A networkbased feature describes some 
time-dependent variable on a customer, used to generate a 
‘suspiciousness score’. The authors also recommend using 
Precision, Recall, and F1-score as the performance evaluation 
metrics for tasks with class imbalance. They noted the best 
performance when they under-sampled the majority class 
(i.e. non-fraud) as a class balancing strategy. A stacking 
classifier using a meta Logistic Regression (LR) estimator, 
RF, and eXtreme Gradient Boosting (XGB) achieved the best 
overall results. LR derives conditional probabilities based on a 
logistic funtion. XGB forms part of the gradient boosting type 
algorithms. Like RF, gradient boosting models are also ensemble 
techniques since they construct several weak classifiers in the 
form of decision trees. The outputs of these weak learners are 
then generalised using gradient descent optimisation. Phua 
et al. [24] also investigated the problem of skewed data using 
public insurance fraud detection dataset. The authors suggest 
using a stacking classifier of bagged algorithms based on the 
C4.5 technique to deal with handling class imbalance. Sahin et 
al. [27] used a DT with cost-sensitive learning as an application 
to credit card fraud detection and argue that cost-sensitive 
learning is the best way to combat class imbalance based on 
their empirical results.

Li et al. [15] compare a Na¨ıve Bayes (NB) classifier, LR, 
and an Artificial Neural Network (ANN) on credit card fraud 
detection. This study observes that on a balanced dataset, 
the LR model outperformed the other two; however, on an 
imbalanced dataset, the NB algorithm achieved the best 
overall performance. Monedero et al. [22] investigated energy 
consumption fraud using three models based on Pearson 
Correlation, Bayesian networks, and DT. The authors then 
merge the results of all three models to obtain a final list of 
potentially fraudulent customers. Coma-Puig et al. [8] later 
extended the latter and presented an empirical analysis of 
several machine learning techniques. The authors evaluated 
the algorithms on their Area Under the Receiver Operating 
Characteristics (AUROC) after 4-fold cross-validation. The 
authors found Gradient Boosting (GB), RF, and AdaBoost with an 
NB as its base estimator to be the best-performing algorithms. 
Kim and Kim [12] and Akhilomen [1] also investigate credit 
card fraud detection using different ANN architectures. Other 
supervised techniques investigated include a self-organising map 
(SOM) [23] and combining Recency-Frequency-Monetary (RFM) 
variables and Social Network Analysis in an RF [31].

Besides the issue of class imbalance, fraudulent activity is also 
continuously changing, and fraudsters are always discovering 
newer approaches to remain undetected. In machine learning, 
we refer to this phenomenon as conceptdrift, where the 
underlying statistical distribution of the data morphs over time; 
thus, rendering the predictive model to become less accurate 
by time [34]. Dealing with concept drift requires that the 
model is kept up-to-date with the latest behavioural trends by 
performing regular model re-training, i.e. incremental learning. 
Based on the speed of the data morphism, referred to as the 
drift rate by Somasundaram and Reddy [28], we can determine 
the necessary frequency of learning to keep the model relevant. 
In their study, Somasundaram and Reddy [28] demonstrate how 
using incremental learning and cost-sensitive estimators can 
help deal with both class imbalance and concept drift issues. 
Wang et al. [33] also describe online learning as another viable 
solution for dealing with concept drift. In online learning, the 
incoming data samples simultaneously update the learning 
algorithm as it flows into the model.

More recently, researchers are also investigating the topic of 
explainability to machine learning modelling. Most Artificial 
Intelligence (AI) algorithms are black-box machines, meaning 
that we cannot easily see how the model generates predictions. 
Even though we measure performance, ultimately, we blindly 
trust these algorithms and their predictions. The emerging field 
of eXplainable AI (XAI) is interested in extracting the knowledge 
and rationale behind a model’s particular prediction or set of 
predictions. The ability to explain a specific prediction is vital, 
especially when such a prediction motivates or directly invokes 
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another action or reaction [26]. XAI systems would not just help 
to instil trust in an AI but also act as a medium to understand 
better what the model believes to be the causal factors of a 
specific problem. XAI also provides a glimpse of how the model 
will behave in the future. A model can be either explained 
globally or locally. A global XAI system attempts to explain to 
the entire model while a local explanation works by generating 
the rationale behind every individual sample and subsequent 
prediction [25]. One of the most recent advancements in 
local explanations is the Local Interpretable Model-Agnostic 
Explanation (LIME) technique, introduced in Ribeiro et al. [26]. 
Given an incoming sample for prediction, LIME approximates 
local linear artificial data points (in the neighbourhood of the 
incoming sample) and performs data perturbation to determine 
how every feature influences the model’s prediction. This 
process results in prediction explanations consisting of the 
influential features represented as a mathematical equality.

Lundberg and Lee [17] also tackled the problem of prediction 
interpretability by presenting SHapley Additive exPlanations 
(SHAP). Similarly to LIME, SHAP also yields local explanations. 
Inspired by game theory, SHAP also determines the contribution 
of every feature to the model’s prediction per incoming sample. 
One of the advantages of LIME and SHAP is their model 
agnosticism property, meaning that both techniques can work 
in conjunction with any model. Despite XAI still being in its 
infancy stage, researchers have already investigated its benefits 
in relation to the medical domain [10, 16, 20, 30, 32], mass 
surveillance [10], knowledge graphs [14], and image-based 
predictive maintenance [13]. Marino et al. [18] also investigated 
XAI as part of an anomaly detection approach for intrusion 
detection. To the best of our knowledge, XAI has never been 
explored as an application for cyber-fraud detection, particularly 
in the iGaming industry.

3. Materials and Methods
3.1 Data Preparation

Our Risk and Fraud team perform numerous risk assessments 
daily. Thus, we had access to a historical record of previously 
confirmed fraudulent cases. We extracted several data points 
on these players as well as other players not part of the 
fraudulent list, resulting in a binary classification dataset (‘non-
fraud’ and ’fraud’). Our dataset consisted of 451123 players 
which included a total of 13591 confirmed fraudsters, with the 
remaining players (437532) not being previously flagged for 
fraud. Further, we filtered out those non-fraud players who 
had no activity recorded, bringing down the total number of 
players to 197733 (184142 of which not previously flagged 
as fraud). Besides reducing noise, this process also acted 

as an under-sampling strategy and helped improve our class 
imbalance issue slightly. Our fraud class represents 6.87% of the 
entire dataset. We monitored over 1000 dimensions which we 
later reduced to 25 features based on the following attributes 
(we further discuss this process in Section 3.3):
1. Multi-session behavioural aggregates
2. Gaming patterns
3. Session identification and geolocation
4. Demographics
5. Payment information

3.2 Experimental Setup

For this study, we used Python 3.7 with the Anaconda 
distribution as our primary development language. We 
conducted our experiments using Jupyter Notebooks on a 
16GB RAM, 64-bit Unix system. To combat over-fitting, we used 
Stratified k-Fold cross-validation to consider every sample once 
for validation and k−1 times for model training.

3.3 Data Pre-Processing

We observed that some of our features had missing values, 
mostly attributed to no player activity concerning that specific 
data point. To deal with this issue, we imputed all missing values 
using the median. We justify using the median instead of the 
mean due to most of our features being highly skewed. We 
attribute high skewness to differences in behaviour between 
one player and another as well as the presence of outlier 
samples. Scaling the dataset without properly handling this 
characteristic yielded sub-par results in scaling. As part of our 
scaling strategy, we categorised our features into three groups: 
booleans, scalars, and highlyskewed scalars. For boolean 
features, we ensured that they only had either a value of 1 or 
0. For the scalar category, we scaled the feature values using 
Equation 1. Equation 1 allows us to scale a feature within its 
respective inter-quartile range. This approach is also robust to 
outliers. In the case of highly skewed features, we found that 
scaling using this approach alone did not produce satisfactory 
results. Therefore, we first applied a logarithmic transformation 
on the absolute value of the highly-skewed features before 
using Equation 1.

where: xτ is the transformed value 
xi is the value of feature x 
Q1(x) is the lower quartile of x 
Q2(x) is the median of x Q3(x) is the upper quartile of x 
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As previously mentioned, our dataset was highly dimensional 
with over 1000 features. Besides adding complexity in the 
model, a high number of features results in an increased 
risk of over-fitting. We performed a 3-step feature selection 
strategy. Firstly, we removed all single-valued features since 
such a feature does not contribute any value to our solution. 
Secondly, we removed multi-collinear features based on a 
Pearson correlation coefficient threshold of 0.7, since values 
greater than 0.7 can be considered as highly correlated. Multi-
collinear features tend to increase model complexity without 
supplementing value to the model, and in some cases, also 
harms predictive performance. This step drastically reduced 
our dimensionality. Finally, we trained a base LightGBM (LGB) 
model for several iterations to extract feature importance. LGB 
is another model part of the gradient boosting family, similar to 
XGB. We removed those features which do not contribute to a 
99% cumulative importance. This strategy dropped our number 
of features down to 25.

Motivated by literature, we also attempted to understand 
whether our observed fraudulent behaviour is prone to 
concept-drift. We split our dataset into several bins, including 
1-year, 6-months, 4-months, 1-month, and 1-week. We used 
the Mann-Whitney u-test to assess whether the features 
from one bin appear to be from a different distribution when 
compared to the same feature from another bin. We visualised 
the percentage of ‘significant features’, per bin. Furthermore, 
we also set up an experiment to investigate causal inference 
between bins using an algorithm based on Bayesian Structural 
Time Series. The algorithm compares the observed behaviour 
after the event against the expected behaviour and infers the 
statistical significance of a causal impact. The algorithm uses 
the Bayesian-based model for the expected behaviour by 
predicting posterior behaviour if the event did not occur. For 
us, the event was simply the end of a particular bin and the 
commencement of another (i.e. starting of a new year).

3.4 Predictive Modelling

Motivated by the literature in Section 2, we evaluated the 
predictive performance of RF, LGB, DT, and LR on our dataset. 
We used Stratified 10-fold cross-validation to minimise the risk 
of over-fitting and preserve the class distribution and compare 
the models on their respective AUROC (the model’s ability 
to distinguish between both classes), Precision (the ratio of 
correct positive predictions to the total positive predictions), 
Recall (the fraction of positive cases correctly predicted), 
and F1-score (the harmonic mean of Precision and Recall) 
averages and variances. For the bestperforming pipeline, we 
also evaluated the model’s falsealarm rate (using Equation 2). 
We also experimented with over-sampling the minority class 

using Synthetic Minority Over-sampling TEchnique (SMOTE) 
to balance both classes further. We evaluated all models using 
their default hyperparameters (from the scikit-learn Python 
package). We further performed hyper-parameter tuning using 
Bayesian optimisation and distributed Tree of Parzen Estimators 
(TPE) of the best performing model.

where: FR is the false-alarm rate
 FP is the false positives
 TN is the true negatives

Following training and tuning of our best model, we also 
investigated the concept-drift phenomenon from the 
perspective of predictive performance decay. With this 
experiment, we wanted to quantify our drift rate based on an 
empirical and data-driven approach. We set up an experiment to 
simulate production and assess how the data-drift evolves. We 
selected a testing size of x of 3-months and an interval of y of 
1-month. We start the experiment by setting our test set equal 
to the latest x of our data with the remaining months forming 
part of the training. We repeated the experiment until the 
training set only included the oldest x. After every iteration, we 
removed the most recent month based on y from our dataset 
and repeated the experiment. At every iteration, we recorded 
the performance metrics. We selected x and y based on 
previous analysis. We further illustrate this simulation in Figure 
1. We also used the Mann-Whitney u-test again to map the 
statistical significance between the change in the percentage 
of significant features against the change in predictive 
performance. This algorithm has a time-complexity of O(n2) and 
was executed on a total of 3450 binned observations, which 
took 668ms to complete.

Fig. 1 Schematic of the simulation experiment to quantify the driftrate.
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3.5 Local Interpretable Explanations

The final part of our pipeline was to extract explanations for every individual prediction. 
We used locally faithful explanations to determine which features had the most 
significant contribution for that particular instance and quantify that same contribution. 
These explanations are represented as feature conditions in the form of mathematical 
inequalities, and every condition has an attributed relative strength (positive if the 
contribution was towards the positive class and vice-versa). Our approach was to extract 
the top 5 features driving the prediction and extract their respective conditions. We 
filtered out those conditions which had a negative relative strength, primarily because our 
interest lies in explaining which features are indicative of potentially fraudulent behaviour 
- answering the question: why does our model think that this player is fraudulent?

4. Results and Discussion
As discussed in Section 3.4, we evaluated the LGB, RF, DT, and LR techniques on multi-
session data using stratified 10fold cross-validation. We show the obtained averaged 
results in Table 1.

Model AUROC Precision Recall F1 Time (s)

LGB 0.818 ± 0.054 0.842 ± 0.063 0.644 ± 0.115 0.722 ± 0.044 28.310

RF 0.799 ± 0.042 0.877 ± 0.054 0.602 ± 0.083 0.713 ± 0.075 64.730

DT 0.809 ± 0.042 0.620 ± 0.068 0.641 ± 0.085 0.630 ± 0.076 25.861

LR 0.732 ± 0.069 0.808 ± 0.082 0.471 ± 0.137 0.591 ± 0.129 135.326

We demonstrate that the LGB achieved the best performance. The LGB algorithm 
outperformed all of the other evaluated algorithms on the AUROC, recall, and F1-score. 
Considering the precision, we note the best result from the RF, which also obtained 
the most consistent (in terms of variance) results across all metrics. Both DT and LR 
obtained mediocre results when compared to the RF and LGB techniques. In our use-
case, we prioritised precision. This inherently excludes DT from any future analysis 
given that this technique yielded the lowest precision value from the group. Although 
the LR achieved rather good precision values, overall, the RF and LGB shadowed it on 
all metrics. We selected LGB as our best-performing pipeline, mainly for two reasons: 
better AUROC and a better F1. Although RF obtained the best precision values, the LGB 
approach seems to have yielded a more robust model overall. With a slightly higher 
AUROC and F1-score, LGB appears the most balanced model out of the two. Further, 
LGB resulted in an average fraud false-alarm rate of 0.402%. For all algorithms, we tried 
over-sampling with SMOTE; however, we did not observe any performance improvements. 
As aforementioned, we performed automated TPE hyper-parameter tuning on LGB which 
considered rounded uniform ‘num leaves’, log uniform ‘learning rate’, rounded log uniform 
‘min data  in leaf’, uniform ‘bagging fraction’, and uniform ‘feature fraction’. We set our 
hyper-parameter process to perform 50 evaluations, which too about 2 hours to complete. 
The number of evaluations is directly proportional to the execution time and quality of the 
hyper-parameters.
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4.1 Quantifying the Drift-Rate

As our first attempt to quantify the drift-rate, we used the 
Mann-Whitney u-test to investigate feature distribution 
morphism. We tested the latter for different buckets, starting 
from yearly bins to monthly. We observed that for the broader 
bins, the majority of the features (60% to 70% of the features) 
did show distribution-drifts. This behaviour appears to be tamed 
when considering the monthly bins, albeit still fluctuating (refer 
to Figure 2).

Fig. 2 Percentage of features exhibiting distribution-drift 
using monthly bins.

From month to month, we expect around 10% to 40% of 
the features to suffer drift. We also note that the highest 
percentage drift recorded came from bin 37-38, which 
represented early 2020. Since this time coincided with the 
COVID-19 outbreak, we started to correlate such drifts with 
this event. To further investigate this behaviour, we visualised 
the distribution-drift for weekly bins. We observed similar 
behaviour to that of the monthly bins, and thus, excluded the 
weekly bins and investigated further using the monthly bins. 
One added benefit of this data-drift detection strategy is the 
added coverage of how the data is changing. By monitoring 
distribution morphism of every individual feature, we were able 
not just to understand the quantitative severity of the drift 
but also investigate which features are drifting. Following, we 
investigated the causal impact on the underlying distribution of 
the data by two events: the start of the year 2020 and the start 
of the COVID-19 pandemic (February/March 2020). After both 
events, we can observe a negative cumulative effect on the 
data distribution. However, with a level of significance of 0.05, 
both results are not statistically significant. We show the causal 
impact of COVID-19 in Figure 3, which is also representative of 
what we observed for the 2020 causal impact. Although there is 

not enough statistical evidence for us to attribute such drift to 
a particular event, we definitely cannot argue that conceptdrift 
is not present in our dataset. Without training the model on any 
2020 data, we noticed poor results (around 50% precision and 
1% recall).

We can also confirm the presence of data-drift through the 
simulation experiment. Similarly to our previous results, Figure 4 
shows a sharp drop in recall at around the 9th

Fig. 3 Causal impact of the start of COVID-19 on the data distribution.

(November/December 2019) and 8th (February/March 2020) 
iterations. The deeper we go into 2020, the worse the observed 
recall. Based on these results, we appear to have a drift-rate of 
approximately 1-month. Hence, we need to perform model re-
training at least every month.

Fig. 4 Recall performance decay per iteration using monthly bins.
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4.2 Prescriptive Analytics using XAI

Following the process as discussed in Section 3.5, we ended 
up with a list of explanations attributed to every individual 
prediction. We visualised these explanations accordingly. 
We show an example of such visualisations in Figure 5. In 
this particular instance, the model correctly predicted this 
fraudulent player with a probability of 0.98. The model picked 
up a country mismatch at login (the strongest indicator) and 
irregular patterns in the bet counts and number of payments as 
the leading indicators of potentially fraudulent behaviour.
Further, we can understand that the model flagged the login 
mismatch and betting behaviour because they were 0, while 
the total payments were ≤ 0 (based on the scaletransformed 
values). This process took approximately 2 seconds per 
instance.

Fig. 5 An example of an explainable prediction.

5. Conclusions

In this research, we investigated the effectiveness of machine 
learning techniques to flag fraudulent behaviour in the 
iGaming industry. We demonstrated how one could leverage 
existing XAI algorithms to explain individual predictions for 
prescriptive solutions and extract additional knowledge on the 
causation of cyber-fraud. We had access to a labelled (‘fraud’ 
and ‘non-fraud’) dataset with a sample size of 197733, where 
our fraudulent instances represented 6.87% of the entire 
dataset. We tackled this problem as a binary classification 
task. We compared pipelines based on the RF, LGB, DT, and LR 
techniques, evaluated using stratified 10-fold cross-validation. 
We show that the LGB algorithm achieved an AUROC of 0.818 (± 
0.054), a precision of 0.842 (± 0.063), a recall of 0.644 (± 0.115), 
and an F1-score of 0.722 (± 0.044), outperforming the other 
evaluated models.

Further, we tuned the hyper-parameters of the LGB model 
using Bayesian optimisation methods. We also addressed the 
phenomenon of concept-drift through an empirical and data-
driven strategy which confirmed the presence of data-drift. We 
concluded that the drift-rate was around the 1-month mark, 
suggesting a monthly re-training for the model to remain reliably 
updated. Using this approach, we were also able to understand 
how the players’ behaviour drifts. We also extended the 
predictive component of our work by leveraging the emerging 
field of XAI to generate prescriptive solutions through locally 
faithful explainable predictions. One limitation of this research is 
the manually labelled dataset, which might have introduced bias 
and human-error in our analysis. Nonetheless, given that the 
same team that labelled this data will be using our solution, the 
effect of this limitation is diminished. In our future work, we will 
be investigating the relevance of online learning to combat the 
concept-drift problem further.

Through XAI, we are essentially prescribing courses-of-action 
to our fraud analysts, saving them time and optimising their 
workflow. XAI serves as padding between our model and 
the fraud analysts. Using XAI allows us also to minimise the 
adverse effects of incorrect predictions. The main drawback 
of a wrong prediction is eating away time which the fraud 
analyst could have used to investigate other cases. With 
the addition of XAI, we are drastically reducing this time 
by letting the fraud analysts know precisely where to look. 
Furthermore, these explanations are aiding the fraud analysts 
in uncovering emerging fraudulent behaviours and discovering 
other fraudulent patterns, which are not straightforward or 
manifested. Ultimately, our application of XAI methodology to 
generate prescriptive predictions equips our fraud analysts with 
the necessary tools to get a leg up on the fraudulent activity.
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